TUGAS PTI (MEMORY)

                                                                                                                                                     post : luthfi

TUGAS PTI 

                                                                                   

 

MEMORY

 

1.  HIERARKI MEMORY

 


 

 Hierarki Memori adalah sebuah konsep penting bagi CPU untuk dapat melakukan manipulasi data. Digunakan oleh CPU untuk memori yang diakses secara berulang kali. Dari pada mengambil dari memori utama setiap kali, memori disimpan dalam cache untuk akses yang lebih cepat.

 

 

 

Hierarki memori atau memory hierarchy 

· peningkatan waktu akses (access time) memori (semakin ke bawah semakin lambat, semakin ke atas semakin cepat)

· peningkatan kapasitas (semakin ke bawah semakin besar, semakin ke atas semakin kecil)

· peningkatan jarak dengan prosesor (semakin ke bawah semakin jauh, semakin ke atas semakin dekat)

· penurunan harga memori tiap bitnya (semakin ke bawah semakin semakin murah, semakin ke atas semakin mahal)

Memori yang lebih kecil, lebih mahal dan lebih cepat diletakkan pada urutan teratas. Sehingga, jika diurutkan dari yang tercepat, maka urutannya adalah sebagai berikut:

1. register mikroprosesor. Ukurannya yang paling kecil tetapi memiliki waktu akses yang paling cepat, umumnya hanya 1 siklus CPU saja.

2. Cache mikroprosesor, yang disusun berdasarkan kedekatannya dengan prosesor (level-1, level-2, level-3, dan seterusnya). Memori cache mikroprosesor dikelaskan ke dalam tingkatan-tingkatannya sendiri:

1. level-1: memiliki ukuran paling kecil di antara semua cache, sekitar puluhan kilobyte saja. Kecepatannya paling cepat di antara semua cache.

2. level-2: memiliki ukuran yang lebih besar dibandingkan dengan cache level-1, yakni sekitar 64 kilobyte, 256 kilobyte, 512 kilobyte, 1024 kilobyte, atau lebih besar. Meski demikian, kecepatannya lebih lambat dibandingkan dengan level-1, dengan nilai latency kira-kira 2 kali hingga 10 kali. Cache level-2 ini bersifat opsional. Beberapa prosesor murah dan prosesor sebelum Intel Pentium tidak memiliki cache level-2.

3. level-3: memiliki ukuran yang lebih besar dibandingkan dengan cache level-2, yakni sekitar beberapa megabyte tetapi agak lambat. Cache ini bersifat opsional. Umumnya digunakan pada prosesor-prosesor server dan workstation seperti Intel Xeon atau Intel Itanium. Beberapa prosesor desktop juga menawarkan cache level-3 (seperti halnya Intel Pentium Extreme Edition), meski ditebus dengan harga yang sangat tinggi.

3. Memori utama: memiliki akses yang jauh lebih lambat dibandingkan dengan memori cache, dengan waktu akses hingga beberapa ratus siklus CPU, tetapi ukurannya mencapai satuan gigabyte. Waktu akses pun kadang-kadang tidak seragam, khususnya dalam kasus mesin-mesin Non-uniform memory access (NUMA).

4. Cakram Magnetis cakram magnetis, yang sebenarnya merupakan memori yang digunakan dalam memori utama untuk membantu kerja cakram magnetis.

5. Tape magnetis adalah sebuah media penyimpanan tipe lama yang cara kerjanya seperti media kaset tape recorder.Media penyimpanan magnetic tape terbuat dari bahan magnetic yang dilapiskan ke pita yang mirip pita kaset. Data yang tersimpan di sana tidak akan bisa diedit atau diubah lagi.Magnetic tape mempunyai kecepatan putar sebesar 18,75-200 inci per detik, dan satu rol nya dapat menyimpan data setara dengan 10.000 punch card

6. Cakram Optis Dalam komputer, reproduksi suara, dan video, cakram optis merujuk kepada cakram plastik, tipis, bundar yang dilapisi dengan bahan yang mampu menyimpan bit data dalam bentuk daerah yang memantul dan tidak memantul (pits and lands); dari mana data tersimpan bisa dibaca kembali ketika disinari dengan sumber cahaya halus, seperti dari diode laser.

Cakram optis yang pertama adalah laserdisk video yang dibuat     oleh Philips dari akhir tahun 1960-an dan dipasarkan pada pertengahan 1970-an bersama dengan Sony. Pengetahuan dari pengembangan ini menyebabkan terciptanya compact disc pada tahun 1980.

Bit pada cakram optis disimpan secara sejajar di atas jalur spiral berkelanjutan dari jalur alam keluar.


Bagian dari sistem operasi yang mengatur hierarki memori disebut dengan memory manager. Di era multiprogramming ini, memory manager digunakan untuk mencegah satu proses dari penulisan dan pembacaan oleh proses lain yang dilokasikan di primary memory, mengatur swapping antara memori utama dan disk ketika memori utama terlalu kecil untuk memegang semua proses. Tujuan dari manajemen ini adalah untuk:

1. Meningkatkan utilitas CPU.

2. Data dan instruksi dapat diakses dengan cepat oleh CPU.

3. Efisiensi dalam pemakaian memori yang terbatas.

4. Transfer dari/ke memori utama ke/dari CPU dapat lebih efisien.

 

 

 

 

 

2. MEMORY MANAGEMENT

Definisi Memory Management

Memori manajemen adalah tindakan mengelola memori komputer. Kebutuhan utama manajemen memori adalah untuk menyediakan cara untuk secara dinamis mengalokasikan bagian-bagian dari memori untuk program atas permintaan mereka, dan membebaskan untuk digunakan kembali ketika tidak lagi diperlukan. Ini sangat penting untuk setiap sistem komputer canggih di mana lebih dari satu proses mungkin berlangsung setiap saat.

Alamat Memori

a) Alamat memori mutlak (alamat fisik)

Sel memori pada memori kerja adalah sumber daya berbentuk fisik, sehingga untuk mencapai sel memori ini digunakan kata pengenal. Maka disebutlah alamat fisik dan karena nomor alamat fisik ini bersifat mutlak (nomor setiap sel adalah tetap), maka disebut juga alamat mutlak.

b) Alamat memori relatif (alamat logika)

Alamat memori yang digunakan oleh program / data berurutan / berjulat. Jika kita menggunakan alamat 1, maka kitapun menggunakan alamat 2,3, … dan untuk 1 informasi jika alamat awalnya 0 dan alamat lainnya relatif terhadap alamat awal 0 ini, maka dinamakan alamat relatif. Dan alamat tersebut adalah logika dari untaian alamat yang menyimpan informasi maka dikenal alamat memori logika. Contoh : alamat awal relatif 0, alamat awal fisik 14726, maka selisihnya = relokasinya = 14726-0 = 14726.

Fungsi Manajemen Memori

1. Mengelola informasi yang dipakai dan tidak dipakai.

2. Mengalokasikan memori ke proses yang memerlukan.

3. Mendealokasikan memori dari proses telah selesai.

4. Mengelola swapping atau paging antara memori utama dan disk.

Partisi Memori

Partisi memori adalah pembagian harddisk menjadi beberapa bagian yang digunakan untuk mempermudah manajemen file.

Terdapat 2 jenis partisi memori, yaitu :

1. Fixed Partitioning
Ciri-ciri :
– Pembagian memori ditentukan di awal dan tidak dapat dirubah
– Ukuran partisi bisa sama (equal-size) atau berbeda (unequal-size)Kesulitan yang dihadapi :
– Ukuran program > ukuran partisi
– Penggunaan memori yang tidak efisien
– Internal Fragmentation

2. Dynamic Partitioning
Dalam dynamic memory partitioning,,memori dipartisi menjadi bagian-bagian dengan jumlah dan besar yang tidak tentu.Ciri-ciri :
– Alokasi memori ditentukan saat runtime
– Setiap proses diberikan alokasi sesuai yang dibutuhkan

 

Kesulitan yang dihadapi :
– External Fragmentation
– Ruang kosong di memori banyak, tetapi terbagi-bagi

 

Syarat Pengelolaan Memori

· Relokasi
Prosesor dan sistem operasi harus dapat mentransfer memory referensi ( dalam bentuk kode program ) ke alamat fisik yang mengalokasikan program dalam memory utama.

· Proteksi
User tidak boleh mengakses beberapa bagian dari wilayah sistem operasi.

· Sharing
Memory skunder pada manajemen memory dapat mengontrol sharing area pada memory utama.

· Organisasi Logika
Sistem oerasi dan hardware berusaha untuk dapat berhubungan dengan user program dalamsatu modul.

· Organisasi fisik
Harus ada pengaturan yang jelas antara memory utama dngan memory skunder pada Longterm scheduling.

 

3. Jenis-Jenis Memori Komputer

Berdasarkan lokasinya, memori terdiri dari empat jenis yang berbeda. Agar lebih paham, simak penjelasannya di bawah ini.

Primer

Memori primer adalah jenis yang digunakan untuk menyimpan data ketika processor menggunakan program secara aktif. Dengan kata lain, jenis satu ini merupakan memori utama sistem operasi yang berinteraksi secara langsung dalam CPU, cache, dan auxiliary. Contoh memori primer diantaranya yakni:

RAM

RAM merupakan salah satu memori primer atau memori utama yang dapat diakses langsung oleh CPU secara cepat. RAM sendiri tergolong sebagai memori volatile sehingga data yang ada di dalamnya bisa hilang jika aliran listrik dimatikan. Oleh sebab itu, perangkat ini sering disebut sebagai media penyimpanan data sementara.

ROM

Sama halnya RAM, perangkat ini dapat diakses secara langsung oleh CPU dan termasuk memori utama. Namun, ROM memiliki sifat non-volatile sehingga data akan tetap tersimpan meski tidak ada daya sekalipun. Sebagai memori read-only, data ROM hanya dapat dibaca alias tidak bisa dimodifikasi.

Sekunder

Memori sekunder merupakan media ruang penyimpanan permanen yang digunakan untuk menyimpan data. Jenis satu ini lebih dikenal dengan sebutan memori eksternal karena tidak diakses secara langsung oleh CPU. Meski harganya relatif lebih murah dan mampu menyimpan data dalam waktu panjang, namun memori ini umumnya lebih lambat daripada memori primer. Berikut ini adalah beberapa contohnya:

Harddisk

Harddisk merupakan memori non-volatile yang mampu menyimpan data secara permanen meski tidak ada aliran listrik. Memori ini biasanya ditempatkan di motherboard yang mengambil dan menyimpan data dengan satu atau lebih piringan serta dilindungi oleh casing tertutup udara. Dengan kapasitas bervariasi, harddisk dimanfaatkan untuk menyimpan dokumen, video, musik, sistem operasi, dan jenis data lainnya.

USB

USB merupakan sebuah perangkat portabel yang berfungsi untuk menyimpan data permanen. Berbeda dengan harddisk, USB menggunakan chip dengan sirkuit terpadu agar dapat menyimpan data. Selain itu, memori ini bisa terhubung dengan perangkat komputer melalui port USB.

Compact disk (CD)

Compact disk atau lebih dikenal dengan singkatan CD merupakan perangkat yang digunakan untuk menyimpan dan membackup data. Sama halnya penyimpanan lain, CD mampu menyimpan data seperti video, audio, dokumen, OS, dan lain sebagainya. Pada prosesnya, data CD dapat ditulis dan dibaca menggunakan sinar laser.

Cache

Memori cache memiliki ukuran kecil serta dapat kamu temui diantaranya memori utama dan CPU. Sebagai memori sementara, kinerja memori cache sangat tinggi bahkan lebih cepat dari memori utama. Data yang disimpan pada cache adalah seluruh instruksi data yang sering digunakan CPU perangkat komputer. Karena lokasinya berada dekat dengan chip CPU, cache memory juga sering disebut dengan nama memori CPU.

Register

Register merupakan memori tercepat dan terkecil pada perangkat komputer. Memori register merupakan media penyimpanan sementara untuk mentransfer dan menyimpan instruksi data tertentu pada komputer. Umumnya, memori ini memiliki ukuran relatif kecil yakni 16, 32, atau 64 bit.

 

 

 

4.Perkembangan RAM (Random Access Memory)

RAM (~1968)

RAM yang merupakan singkatan dari Random Access Memory ditemukan oleh Robert Dennard dan diproduksi secara besar – besaran oleh Intel pada tahun 1968, jauh sebelum PC ditemukan oleh IBM pada tahun 1981. Dari sini lah perkembangan RAM bermula. Pada awal diciptakannya, RAM membutuhkan tegangan 5.0 volt untuk dapat berjalan pada frekuensi 4,77MHz, dengan waktu akses memori (access time) sekitar 200ns (1ns = 10e-9 detik).

DRAM (~1970)


 


Pada tahun 1970, IBM menciptakan sebuah memori yang dinamakan DRAM. DRAM sendiri merupakan singkatan dari Dynamic Random Access Memory. Dinamakan Dynamic karena jenis memori ini pada setiap interval waktu tertentu, selalu memperbarui keabsahan informasi atau isinya. DRAM mempunyai frekuensi kerja yang bervariasi, yaitu antara 4,77MHz hingga 40MHz.

FP RAM (~1987)

 

 


Fast Page Mode DRAM atau disingkat dengan FPM DRAM ditemukan sekitar tahun 1987. Sejak pertama kali diluncurkan, memori jenis ini langsung mendominasi pemasaran memori, dan orang sering kali menyebut memori jenis ini “DRAM” saja, tanpa menyebut nama FPM. Memori jenis ini bekerja layaknya sebuah indeks atau daftar isi. Arti Page itu sendiri merupakan bagian dari memori yang terdapat pada sebuah row address. Ketika sistem membutuhkan isi suatu alamat memori, FPM tinggal mengambil informasi mengenainya berdasarkan indeks yang telah dimiliki.

FPM memungkinkan transfer data yang lebih cepat pada baris (row) yang sama dari jenis memori sebelumnya. FPM bekerja pada rentang frekuensi 16MHz hingga 66MHz dengan access time sekitar 50ns. Selain itu FPM mampu mengolah transfer data (bandwidth) sebesar 188,71 Mega Bytes (MB) per detiknya. Memori FPM ini mulai banyak digunakan pada sistem berbasis Intel 286, 386 serta sedikit 486.

EDO RAM (~1995)


 


Pada tahun 1995, diciptakanlah memori jenis Extended Data Output Dynamic Random Access Memory (EDO DRAM) yang merupakan penyempurnaan dari FPM. Memori EDO dapat mempersingkat read cycle-nya sehingga dapat meningkatkan kinerjanya sekitar 20 persen. EDO mempunyai access time yang cukup bervariasi, yaitu sekitar 70ns hingga 50ns dan bekerja pada frekuensi 33MHz hingga 75MHz. Walaupun EDO merupakan penyempurnaan dari FPM, namun keduanya tidak dapat dipasang secara bersamaan, karena adanya perbedaan kemampuan.
Memori EDO DRAM banyak digunakan pada sistem berbasis Intel 486 dan kompatibelnya serta Pentium generasi awal.

SDRAM PC66 (~1996)


 


Pada peralihan tahun 1996 – 1997, Kingston menciptakan sebuah modul memori dimana dapat bekerja pada kecepatan (frekuensi) bus yang sama/sinkron dengan frekuensi yang bekerja pada prosessor. Itulah sebabnya mengapa Kingston menamakan memori jenis ini sebagai Synchronous Dynamic Random Access Memory (SDRAM). SDRAM ini kemudian lebih dikenal sebagai PC66 karena bekerja pada frekuensi bus 66MHz. Berbeda dengan jenis memori sebelumnya yang membutuhkan tegangan kerja yang lumayan tinggi, SDRAM hanya membutuhkan tegangan sebesar 3,3 volt dan mempunyai access time sebesar 10ns.

Dengan kemampuannya yang terbaik saat itu dan telah diproduksi secara masal, bukan hanya oleh Kingston saja, maka dengan cepat memori PC66 ini menjadi standar memori saat itu. Sistem berbasis prosessor Soket 7 seperti Intel Pentium klasik (P75 – P266MMX) maupun kompatibelnya dari AMD, WinChip, IDT, dan sebagainya dapat bekerja sangat cepat dengan menggunakan memori PC66 ini. Bahkan Intel Celeron II generasi awal pun masih menggunakan sistem memori SDRAM PC66.

SDRAM PC100 (~1998)

 


 

Chipset ini didesain untuk dapat bekerja pada frekuensi bus sebesar 100MHz. Chipset ini sekaligus dikembangkan oleh Intel untuk dipasangkan dengan prosessor terbaru Intel Pentium II yang bekerja pada bus 100MHz. Karena bus sistem bekerja pada frekuensi 100MHz sementara Intel tetap menginginkan untuk menggunakan sistem memori SDRAM, maka dikembangkanlah memori SDRAM yang dapat bekerja pada frekuensi bus 100MHz. Seperti pendahulunya PC66, memori SDRAM ini kemudian dikenal dengan sebutan PC100.

Dengan menggunakan tegangan kerja sebesar 3,3 volt, memori PC100 mempunyai access time sebesar 8ns, lebih singkat dari PC66. Selain itu memori PC100 mampu mengalirkan data sebesar 800MB per detiknya.

 

 

Hampir sama dengan pendahulunya, memori PC100 telah membawa perubahan dalam sistem komputer. Tidak hanya prosessor berbasis Slot 1 saja yang menggunakan memori PC100, sistem berbasis Soket 7 pun diperbarui untuk dapat menggunakan memori PC100. Maka muncullah apa yang disebut dengan sistem Super Soket 7. Contoh prosessor yang menggunakan soket Super7 adalah AMD K6-2, Intel Pentium II generasi akhir, dan Intel Pentium II generasi awal dan Intel Celeron II generasi awal.

DR DRAM (~1999)


 

Pada tahun 1999, Rambus menciptakan sebuah sistem memori dengan arsitektur baru dan revolusioner, berbeda sama sekali dengan arsitektur memori SDRAM. Oleh Rambus, memori ini dinamakan Direct Rambus Dynamic Random Access Memory. Dengan hanya menggunakan tegangan sebesar 2,5 volt, RDRAM yang bekerja pada sistem bus 800MHz melalui sistem bus yang disebut dengan Direct Rambus Channel, mampu mengalirkan data sebesar 1,6GB per detiknya (1GB = 1000MHz). Sayangnya kecanggihan DRDRAM tidak dapat dimanfaatkan oleh sistem chipset dan prosessor pada kala itu sehingga memori ini kurang mendapat dukungan dari berbagai pihak. Satu lagi yang membuat memori ini kurang diminati adalah karena harganya yang sangat mahal.

RDRAM PC800 (~1999)


 

Masih dalam tahun yang sama, Rambus juga mengembangkan sebuah jenis memori lainnya dengan kemampuan yang sama dengan DRDRAM. Perbedaannya hanya terletak pada tegangan kerja yang dibutuhkan. Jika DRDRAM membutuhkan tegangan sebesar 2,5 volt, maka RDRAM PC800 bekerja pada tegangan 3,3 volt. Nasib memori RDRAM ini hampir sama dengan DRDRAM, kurang diminati, jika tidak dimanfaatkan oleh Intel.

Intel yang telah berhasil menciptakan sebuah prosessor berkecepatan sangat tinggi membutuhkan sebuah sistem memori yang mampu mengimbanginya dan bekerja sama dengan baik. Memori jenis SDRAM sudah tidak sepadan lagi. Intel membutuhkan yang lebih dari itu. Dengan dipasangkannya Intel Pentium4, nama RDRAM melambung tinggi, dan semakin lama harganya semakin turun.

SDRAM PC133 (~1999)


 

Selain dikembangkannya memori RDRAM PC800 pada tahun 1999, memori SDRAM belumlah ditinggalkan begitu saja, bahkan oleh Viking, malah semakin ditingkatkan kemampuannya. Sesuai dengan namanya, memori SDRAM PC133 ini bekerja pada bus berfrekuensi 133MHz dengan access time sebesar 7,5ns dan mampu mengalirkan data sebesar 1,06GB per detiknya. Walaupun PC133 dikembangkan untuk bekerja pada frekuensi bus 133MHz, namun memori ini juga mampu berjalan pada frekuensi bus 100MHz walaupun tidak sebaik kemampuan yang dimiliki oleh PC100 pada frekuensi tersebut.

SDRAM PC150 (~2000)


 

Perkembangan memori SDRAM semakin pesat setelah Mushkin, pada tahun 2000 berhasil mengembangkan chip memori yang mampu bekerja pada frekuensi bus 150MHz, walaupun sebenarnya belum ada standar resmi mengenai frekunsi bus sistem atau chipset sebesar ini. Masih dengan tegangan kerja sebesar 3,3 volt, memori PC150 mempunyai access time sebesar 7ns dan mampu mengalirkan data sebesar 1,28GB per detiknya.

Memori ini sengaja diciptakan untuk keperluan overclocker, namun pengguna aplikasi game dan grafis 3 dimensi, desktop publishing, serta komputer server dapat mengambil keuntungan dengan adanya memori PC150.

DDR RAM (~1999)


 

Pada 1999 dua perusahaan besar microprocessor INTEL dan AMD bersaing ketat dalam meningkatkan kecepatan clock pada CPU. Namun menemui hambatan, karena ketika meningkatkan memory bus ke 133 Mhz kebutuhan Memory (RAM) akan lebih besar. Dan untuk menyelesaikan masalah ini maka dibuatlah DDR RAM (double data rate transfer) yang awalnya dipakai pada kartu grafis, karena sekarang anda bias menggunakan hanya 32 MB untuk mendapatkan kemampuan 64 MB. AMD adalah perusahaan pertama yang menggunakan DDR RAM pada motherboardnya.

DDR SDRAM (~2000)


 

Masih di tahun 2000, Crucial berhasil mengembangkan kemampuan memori SDRAM menjadi dua kali lipat. Jika pada SDRAM biasa hanya mampu menjalankan instruksi sekali setiap satu clock cycle frekuensi bus, maka DDR SDRAM mampu menjalankan dua instruksi dalam waktu yang sama. Teknik yang digunakan adalah dengan menggunakan secara penuh satu gelombang frekuensi. Jika pada SDRAM biasa hanya melakukan instruksi pada gelombang positif saja, maka DDR SDRAM menjalankan instruksi baik pada gelombang positif maupun gelombang negatif. Oleh karena dari itu memori ini dinamakan DDR SDRAM yang merupakan kependekan dari Double Data Rate Synchronous Dynamic Random Access Memory.

Dengan memori DDR SDRAM, sistem bus dengan frekuensi sebesar 100-133 MHz akan bekerja secara efektif pada frekuensi 200 – 266 MHz. DDR SDRAM pertama kali digunakan pada kartu grafis AGP berkecepatan ultra. Sedangkan penggunaan pada prosessor, AMD ThunderBird lah yang pertama kali memanfaatkannya.

DDR2 SDRAM (~2003)


 


Ketika memori jenis DDR (Double Data Rate) dirasakan mulai melambat dengan semakin cepatnya kinerja prosesor dan prosesor grafik, kehadiran memori DDR2 merupakan kemajuan logis dalam teknologi memori mengacu pada penambahan kecepatan serta antisipasi semakin lebarnya jalur akses segitiga prosesor, memori, dan antarmuka grafik (graphic card) yang hadir dengan kecepatan komputasi yang berlipat ganda.

Perbedaan pokok antara DDR dan DDR2 adalah pada kecepatan data serta peningkatan latency mencapai dua kali lipat. Perubahan ini memang dimaksudkan untuk menghasilkan kecepatan secara maksimum dalam sebuah lingkungan komputasi yang semakin cepat, baik di sisi prosesor maupun grafik.

 

 

Selain itu, kebutuhan voltase DDR2 juga menurun. Jika pada DDR kebutuhan voltase tercatat 2,5 Volt, pada DDR2 kebutuhan ini hanya mencapai 1,8 Volt. Artinya, kemajuan teknologi pada DDR2 ini membutuhkan tenaga listrik yang lebih sedikit untuk menulis dan membaca pada memori.

Teknologi DDR2 sendiri lebih dulu  digunakan pada beberapa perangkat antarmuka grafik, dan baru pada akhirnya diperkenalkan penggunaannya pada teknologi RAM. Dan teknologi DDR2 ini tidak kompatibel dengan memori DDR sehingga penggunaannya pun hanya bisa dilakukan pada komputer yang memang mendukung DDR2.

DDR3 SDRAM (~2007)


 


DDR3 ini memiliki kebutuhan daya yang berkurang sekitar 16% dibandingkan dengan DDR2. Hal tersebut disebabkan karena DDR3 sudah menggunakan teknologi 90 nm sehingga konsusmsi daya yang diperlukan hanya 1.5v, lebih sedikit jika dibandingkan dengan DDR2 1.8v dan DDR 2.5v. Secara teori, kecepatan yang dimiliki oleh RAM ini memang cukup memukau. Ia mampu mentransfer data dengan clock efektif sebesar 800-1600 MHz. Pada clock 400-800 MHz, jauh lebih tinggi dibandingkan DDR2 sebesar 400-1066 MHz (200- 533 MHz) dan DDR sebesar 200-600 MHz (100-300 MHz). Prototipe dari DDR3 yang memiliki 240 pin. Ini sebenarnya sudah diperkenalkan sejak lama pada awal tahun 2005. Namun, produknya sendiri benar-benar muncul pada pertengahan tahun 2007 bersamaan dengan motherboard yang menggunakan chipset Intel P35 Bearlake dan pada motherboard tersebut sudah mendukung slot DIMM.

DDR4 SDRAM(~2014)

 

Keuntungan utama DDR4 dibandingkan pendahulunya, DDR3, yaitu kepadatan modul yang lebih tinggi dan kebutuhan tegangan yang lebih rendah, ditambah dengan kecepatan transfer data rate yang lebih tinggi. Standar DDR4 memungkinkan DIMM dengan kapasitas hingga 64 GiB, dibandingkan dengan DDR3 maksimum 16 GiB per DIMM. Karena konsumsi daya meningkat linear dengan kecepatan, pengurangan kebutuhan tegangan memungkinkan operasi kecepatan yang lebih tinggi tanpa tambahan daya dan juga tambahan pendinginan.

DDR4 beroperasi pada tegangan antara 1,2 V dan 1,4 V dengan frekuensi antara 800 dan 2133 MHz (DDR4-1600 hingga DDR4-4266), lebih rendah jika dibandingkan dengan DDR3 yang frekuensinya antara 400 dan 1067 MHz dan kebutuhan tegangan 1,5 atau 1,65 V. Karena sifat DDR, kecepatan biasanya diiklankan sebagai kelipatan dari angka-angka ini (DDR3-1600 dan DDR4-2400 yang paling umum, dan dengan DDR4-3200 dan DDR4-4800 yang tersedia dengan biaya lebih tinggi). Meskipun standar tegangan rendah belum selesai (pada Agustus 2014), diantisipasi bahwa DDR4L (tegangan rendah) akan berjalan pada tegangan 1,05 V, dibandingkan dengan standar tegangan rendah DDR3 (DDR3L) yang membutuhkan 1,35 V untuk beroperasi.

DDR5 SDRAM (~2019)

DDR5 DRAM hampir tiba, dengan sebagian besar pengembang DRAM menjanjikan produk pengiriman pada tahun 2020. Namun, bahkan jika kita melihat beberapa chip DDR5 pada tahun 2019, mereka kemungkinan tidak akan diproduksi secara massal setidaknya sampai tahun 2020 ketika CPU mobile dan desktop juga akan mulai mendukung DDR5.

DDR5 direncanakan akan mengurangi konsumsi daya, namun akan menggandakan bandwidth dan kapasitasnya dibandingkan dengan DDR4 SDRAM. Perusahaan SK Hynix mengatakan bahwa mereka telah berhasil menurunkan tegangan operasi dari 1.2V ke 1.1V, yang, jika dikombinasikan dengan proses baru, menyebabkan pengurangan konsumsi daya 30 persen dibandingkan dengan chip DDR4.

 

Tawaran baru ini mendukung kecepatan transfer data hingga 5.200 Mbps, yang 60 persen lebih cepat dari laju transfer data pada generasi sebelumnya yaitu 3.200 Mbps. Itu berarti chip dapat memproses data 41,6 GB per detik.

Menurut data IDC yang dikutip oleh pengumuman SK Hynix, permintaan untuk DRAM DDR5 diperkirakan akan mencapai 25 persen dari total pasar DRAM pada 2021 dan 44 persen pada 2022.

EVOLUSI MODUL

Selain mengalami perkembangan pada sisi kemampuan, teknik pengolahan modul memori juga dikembangkan.

SIMM

Kependekan dari Single In-Line Memory Module, artinya modul atau chip memori ditempelkan pada salah satu sisi sirkuit PCB. Memori jenis ini hanya mempunyai jumlah kaki (pin) sebanyak 30 dan 72 buah.

SIMM 30 pin berupa FPM DRAM, banyak digunakan pada sistem berbasis prosessor 386 generasi akhir dan 486 generasi awal. SIM 30 pin berkapasitas 1MB, 4MB dan 16MB. Umum digunakan pada memori di tahun 80an hingga 90an

 

 

Sedangkan SIMM 70 pin dapat berupa FPM DRAM maupun EDO DRAM yang digunakan bersama prosessor 486 generasi akhir dan Pentium. SIMM 70 pin diproduksi pada kapasitas 4MB, 8MB, 16MB, 32MB, 64MB dan 128MB.

RIMM/SORIMM

RIMM dan SORIMM merupakan jenis memori yang dibuat oleh Rambus. RIMM pada dasarnya sama dengan DIMM dan SORIMM mirip dengan SODIMM.

Karena menggunakan teknologi dari Rambus yang terkenal mengutamakan kecepatan, memori ini jadi cepat panas sehingga pihak Rambus perlu menambahkan aluminium untuk membantu melepas panas yang dihasilkan oleh memori ini. Jenis ini digunakan pada berbagai platform Intel Pentium 4 sekitar tahun 2000-2002.

DIMM

Kependekan dari Dual In-Line Memory Module, artinya modul atau chip memori ditempelkan pada kedua sisi PCB, saling berbalikan. Memori DIMM diproduksi dalam 2 bentuk yang berbeda, yaitu dengan jumlah kaki 168 dan 184.

DIMM 168 pin dapat berupa Fast-Page, EDO dan ECC SDRAM, dengan kapasitas mulai dari 8MB, 16MB, 32MB, 64MB dan 128MB. Sementara DIM 184 pin berupa DDR SDRAM. Mayoritas RAM saat ini menggunakan DIMM.

SODIMM

Kependekan dari Small outline Dual In-Line Memory Module. Memori ini pada dasarnya sama dengan DIMM, namun berbeda dalam penggunaannya. Jika DIMM digunakan pada PC, maka SO DIMM digunakan pada laptop/notebook.

SODIMM diproduksi dalam dua jenis,jenis pertama mempunyai jumlah kaki sebanyak 72, dan satunya berjumlah 144 buah

 

Read Only Memory (ROM)

Read Only Memory (ROM) adalah suatu himpunan dari chip yang berisi bagian dari sistem operasi yang mana dibutuhkan pada saat komputer dinyalakan. ROM juga dikenal sebagai suatu firmware. ROM tidak bisa ditulisi atau diubah isinya oleh pengguna. ROM tergolong dalam media penyimpanan yang sifatnya non volatile. Chip ROM datang dari pabriknya dengan program atau instruksi yang sudah disimpan di dalamnya. Satu-satunya cara untuk mengganti kontennya adalah dengan mencopotnya dari komputer dan menggantinya dengan ROM yang lain. Chip ROM dapat berisi program yang sering digunakan, seperti rutin-rutin komputasi untuk menghitung akar suatu bilangan dan lain sebagainya.

Penggunaan dari ROM ini contohnya adalah sebagai media penyimpanan dari BIOS (Basic Input-Output System) yang diuat oleh pabriknya. BIOS merupakan bagian yang sangat kritis dari suatu sistem operasi, yang mana fungsinya memberi tahu komputer bagaimana caranya mengakses disk drive. Ketika komputer dinyalakan, RAM masih kosong dan instruksi yang ada pada ROM BIOS lah yang digunakan oleh CPU untuk mencari disk drive yang berisi file-file utama dalam sistem operasi. Komputer lalu memindahkan file-file tersebut ke dalam RAM dan kemudian menjalankannya.

Ada tiga variasi dari ROM, yaitu PROM, EPROM, dan EEPROM.

PROM (Programmable Read Only Memory).

Chip PROM adalah suatu chip yang kosong yang mana program dapat dituliskan ke dalamnya dengan menggunakan suatu peralatan khusus. Chip PROM dapat diprogram sekali dan biasanya digunakan oleh pabrik sebagai control device di dalam produk-produknya.

EPROM (Erasable Programmable Read Only Memory).

EPROM mirip dengan PROM, tetapi program dapat dihapus dan program yang baru bisa dituliskan ke dalamnya dengan menggunakan suatu peralatan khusus yang menggunakan sinar ultraviolet. EPROM digunakan untuk controlling device, seperti robot dan sebagainya.

EEPROM (Electronic Erasable Programmable Read Only Memory).

Chip EEPROM dapat diprogram ulang dengan menggunakan suatu electric impulses yang khusus. Mereka tidak perlu dicabut atau diubah.

 

 

 

Komentar

Postingan populer dari blog ini

||PENGENALAN VIRUS, CARA KERJA, PENANGGULANGAN, DAN CARA MEMPERBAIKI PADA KOMPUTER ANDA||